Aquatic Biosystems
نویسندگان
چکیده
Microalgae feedstock production can be integrated with wastewater and industrial sources of carbon dioxide. This study reviews the literature on algae grown on wastewater and includes a preliminary analysis of algal production based on anaerobic digestion sludge centrate from the Howard F. Curren Advanced Wastewater Treatment Plant (HFC AWTP) in Tampa, Florida and secondary effluent from the City of Lakeland wastewater treatment facilities in Lakeland, Florida. It was demonstrated that a mixed culture of wild algae species could successfully be grown on wastewater nutrients and potentially scaled to commercial production. Algae have demonstrated the ability to naturally colonize low-nutrient effluent water in a wetland treatment system utilized by the City of Lakeland. The results from these experiments show that the algae grown in high strength wastewater from the HFC AWTP are light-limited when cultivated indoor since more than 50% of the outdoor illumination is attenuated in the greenhouse. An analysis was performed to determine the mass of algae that can be supported by the wastewater nutrients (mainly nitrogen and phosphorous) available from the two Florida cities. The study was guided by the growth and productivity data obtained for algal growth in the photobioreactors in operation at the University of South Florida. In the analysis, nutrients and light are assumed to be limited, while CO2 is abundantly available. There is some limitation on land, especially since the HFC AWTP is located at the Port of Tampa. The temperature range in Tampa is assumed to be suitable for algal growth year round. Assuming that the numerous technical challenges to achieving commercial-scale algal production can be met, the results presented suggest that an excess of 71 metric tons per hectare per year of algal biomass can be produced. Two energy production options were considered; liquid biofuels from feedstock with high lipid content, and biogas generation from anaerobic digestion of algae biomass. The total potential oil volume was determined to be approximately 337,500 gallons per year, which may result in the annual production of 270,000 gallons of biodiesel when 80% conversion efficiency is assumed. This production level would be able to sustain approximately 450 cars per year on average. Potential biogas production was estimated to be above 415,000 kg/yr, the equivalent of powering close to 500 homes for a year.
منابع مشابه
Aquatic Biosystems reviewer acknowledgement 2013
CONTRIBUTING REVIEWERS The Aquatic Biosystems editorial team would like to thank the following colleagues who contributed to peer review for the journal in 2013.
متن کاملAquatic biosystems: reactions and actions
Aquatic biological systems are a critical part of the structure and function of earth's biosphere. While attention of the scientific community is often focused on the reaction of biological systems to changes in the environment, these systems also have profound effects, or actions, on the environment. Throughout the evolutionary history of earth, the rise and/or fall of different aquatic biosys...
متن کاملDefense Mechanisms in Hydrobiosystems
This mini-review summarizes our experimental data devoted to constitutive and inducible mechanisms of defense in biosystems of various levels of organization. Autoand heterotrophic components of the transformed hydroecosystems are taken into consideration. The role of higher aquatic plants in the defense mechanisms is considered.
متن کاملEvaluation of Environmental Impacts in Turkey Production System in Iran
Poultry industry is an important production system due to providing remarkable portion of the human food and protein needs. Considering the necessity of environmental protection, the amount of environmental impacts of a turkey production unit in Iran was determined using life cycle assessment method. The required information were collected through questionnaires and interviews with farm owners....
متن کاملFish 'n' chips: the use of microarrays for aquatic toxicology.
Gene expression analysis is changing the way that we look at toxicity, allowing toxicologists to perform parallel analyses of entire transcriptomes. While this technology is not as advanced in aquatic toxicology as it is for mammalian models, it has shown promise for determining modes of action, identifying biomarkers and developing "signatures" of chemicals that can be used for field and mixtu...
متن کاملLamination as a tool for distinguishing microbial and metazoan biosystems from inert structures
Vladimir Ivanovich Vernadsky (1863-1945), who is regarded as one of the founders of modern biogeochemistry, has stated in “Scientific Thought as a Planetary Phenomenon” (1991:120) that “the biosphere appears in biogeochemistry as a peculiar envelope of the Earth clearly distinct from the other envelopes of our planet”. One of the distinctive features of living matter is the tendency to occur in...
متن کامل